首页> 外文OA文献 >Pattern formation for a volume-filling chemotaxis model with logistic growth
【2h】

Pattern formation for a volume-filling chemotaxis model with logistic growth

机译:具有logistic的体积填充趋化模型的模式形成   发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is devoted to investigate the pattern formation of avolume-filling chemotaxis model with logistic cell growth. We first apply thelocal stability analysis to establish sufficient conditions of destabilizationfor uniform steady-state solution. Then, weakly nonlinear analysis withmulti-scales is used to deal with the emerging process of patterns near thebifurcation point. For the single unstable mode case, we derive theStuart-Landau equations describing the evolution of the amplitude, and thus theasymptotic expressions of patterns are obtained in both supercritical case andsubcritical case. While for the case of multiple unstable modes, we also derivecoupled amplitude equations to study the competitive behavior between twounstable modes through the phase plane analysis. In particular, we find thatthe initial data play a dominant role in the competition. All the theoreticaland numerical results are in excellently qualitative agreement and betterquantitative agreement than that in [1]. Moreover, in the subcritical case, weconfirm the existence of stationary patterns with larger amplitudes when thebifurcation parameter is less than the first bifurcation point, which gives anpositive answer to the open problem proposed in [2].
机译:本文致力于研究具有逻辑细胞生长的容积填充趋化模型的模式形成。我们首先应用局部稳定性分析为稳定稳态解建立充分的失稳条件。然后,采用多尺度的弱非线性分析来处理分叉点附近的图案的新兴过程。对于单稳态模态,我们推导了描述振幅变化的斯图尔特-朗道方程,从而在超临界情况和亚临界情况下都获得了模式的渐近表达式。对于多个不稳定模式,我们还导出了耦合振幅方程,通过相平面分析研究了两种不稳定模式之间的竞争行为。特别是,我们发现初始数据在竞争中起着主导作用。与[1]相比,所有的理论和数值结果在定性和定量方面都具有很好的一致性。此外,在亚临界情况下,当分叉参数小于第一个分叉点时,我们确认存在较大振幅的平稳模式,这对[2]中提出的开放问题给出了肯定的答案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号